Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca++ -dependent exocytotic elimination of C5b-9 pores.
نویسندگان
چکیده
Gel-filtered blood platelets exposed to complement proteins C5b-9 have previously been shown to undergo a reversible depolarization of membrane potential (Em) in the absence of lytic plasma membrane rupture. In this paper, we examine the mechanism by which C5b-9 damaged platelets restore their basal electrochemical state, despite increased ion conductance due to membrane insertion of these cytolytic serum proteins. Repolarization of Em after formation of the C5b-9 membrane pore is shown to be accompanied by a Ca++-dependent vesiculation of the platelet surface, which results in the release of these proteins from the plasma membrane and a restoration of the membrane's functional integrity. This exocytotic elimination of C5b-9 complexes from the plasma membrane is accompanied by a ouabain-inhibitable repolarization of Em, which presumably reflects restoration of transmembrane cation gradients by the plasma membrane Na/K ATPase. The role of external Ca++ in the platelet's response to membrane-insertion of the C5b-9 proteins is discussed both in the context of the known cellular effects of this ion and in the context of recent observations suggesting sublytic changes in platelet function after complement-mediated plasma membrane damage.
منابع مشابه
Effect of complement proteins C5b-9 on blood platelets. Evidence for reversible depolarization of membrane potential.
The carbocyanine dye 3,3'-dipropylthiodicarbocyanine iodide has been used to investigate changes in membrane potential (Em) which occur upon binding of complement proteins C5b-9 to the plasma membrane of blood platelets. Gel-filtered platelets exposed to C5b6 and C7 in serum-free medium show no change in Em from that of controls, as indicated by either 3,3,'-dipropylthiodicarbocyanine iodide fl...
متن کاملRegulation of glycoprotein IIb-IIIa receptor function studied with platelets permeabilized by the pore-forming complement proteins C5b-9.
Recent evidence suggests that the cytoplasmic domains of platelet glycoprotein (GP) IIb-IIIa are involved in the agonist-initiated transformation of this integrin into a receptor for fibrinogen. To identify intracellular reactions that regulate the receptor function of GP IIb-IIIa, membrane-impermeable agonists and antagonists were introduced into the platelet by permeabilizing the plasma membr...
متن کاملComplement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase.
The capacity of platelets treated with nonlytic concentrations of the C5b-9 proteins to catalyze prothrombin activation and thereby trigger clot formation has been investigated. When suspended in the presence of exogenous factors Xa and Va, gel-filtered platelets treated with purified C5b-9 proteins catalyzed prothrombin to thrombin conversion at rates up to tenfold above controls, and exceeded...
متن کاملTransient changes in erythrocyte membrane permeability are induced by sublytic amounts of the complement membrane attack complex (C5b-9).
We have previously shown that sublytic heterologous complement induces large but transient increases in erythrocyte membrane permeability. We now report that when erythrocytes are bystanders in zymosan-activated autologous serum, they increase their Na+ permeability 10-fold, indicating that autologous complement can also induce transient membrane lesions. When we isolated the effect of the C5b-...
متن کاملParticipation of Protein Kinases in Complement CSb-9-Induced Shedding of Platelet Plasma Membrane Vesicles
The formation of membrane microparticles through vesiculation of the platelet plasma membrane is known to provide catalytic surface for several enzyme complexes of the coagulation system, and to underlie the procoagulant responses elicited with platelet activation. This induced shedding of vesicles from the plasma membrane is most prominent when platelets are activated by the terminal complemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 68 2 شماره
صفحات -
تاریخ انتشار 1986